Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2287, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480701

RESUMO

CDK4/6 inhibitors (CDK4/6i) have improved survival of patients with estrogen receptor-positive (ER+) breast cancer. However, patients treated with CDK4/6i eventually develop drug resistance and progress. RB1 loss-of-function alterations confer resistance to CDK4/6i, but the optimal therapy for these patients is unclear. Through a genome-wide CRISPR screen, we identify protein arginine methyltransferase 5 (PRMT5) as a molecular vulnerability in ER+/RB1-knockout breast cancer cells. Inhibition of PRMT5 blocks the G1-to-S transition in the cell cycle independent of RB, leading to growth arrest in RB1-knockout cells. Proteomics analysis uncovers fused in sarcoma (FUS) as a downstream effector of PRMT5. Inhibition of PRMT5 results in dissociation of FUS from RNA polymerase II, leading to hyperphosphorylation of serine 2 in RNA polymerase II, intron retention, and subsequent downregulation of proteins involved in DNA synthesis. Furthermore, treatment with the PRMT5 inhibitor pemrametostat and a selective ER degrader fulvestrant synergistically inhibits growth of ER+/RB-deficient cell-derived and patient-derived xenografts. These findings highlight dual ER and PRMT5 blockade as a potential therapeutic strategy to overcome resistance to CDK4/6i in ER+/RB-deficient breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , RNA Polimerase II , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569646

RESUMO

For effective treatments and preventive measures against severe COVID-19, it is essential to determine early markers of disease severity in different populations. We analysed the cytokine kinetics of 129 COVID-19 patients with mild symptoms, 68 severe cases, and 20 healthy controls for the first time in Rwanda. Pro-inflammatory (IFNγ, IL-6, TNFα), Treg (IL-10, TGFß1, TGFß3), Th9 (IL-9), Th17 (IL-17), and Th2 (IL-4, IL-13) cytokines, total IgM and IgG, as well as gene expressions of FoxP3, STAT5+, IFNγ-R1, and ROR alpha+, were measured at day 1, day 7, day 14, day 21, and day 28 post-infection. Severe cases showed a significantly stronger increase than mild patients in levels of all cytokines (except IL-9) and all gene expression on day 1 of infection. Some cytokine levels dropped to levels comparable to mild cases at later time points. Further analysis identified IFNγ as a marker of severity throughout the disease course, while TGFß1, IL-6, and IL-17 were markers of severity only at an early phase. Importantly, this study revealed a striking low IL-9 level and high IFNγ/IL-9 ratio in the plasma of patients who later died compared to mild and severe cases who recovered, suggesting that this could be an important biomarker for predicting the severity of COVID-19 and post-COVID-19 syndrome.


Assuntos
COVID-19 , Citocinas , Humanos , Citocinas/genética , Interleucina-17/genética , Interleucina-9/genética , Interleucina-6 , Cinética , Síndrome Pós-COVID-19 Aguda , Ruanda/epidemiologia , Interferon gama , Gravidade do Paciente
3.
Cancer Res Commun ; 3(7): 1366-1377, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37501682

RESUMO

NF1 is a key tumor suppressor that represses both RAS and estrogen receptor-α (ER) signaling in breast cancer. Blocking both pathways by fulvestrant (F), a selective ER degrader, together with binimetinib (B), a MEK inhibitor, promotes tumor regression in NF1-depleted ER+ models. We aimed to establish approaches to determine how NF1 protein levels impact B+F treatment response to improve our ability to identify B+F sensitive tumors. We examined a panel of ER+ patient-derived xenograft (PDX) models by DNA and mRNA sequencing and found that more than half of these models carried an NF1 shallow deletion and generally have low mRNA levels. Consistent with RAS and ER activation, RET and MEK levels in NF1-depleted tumors were elevated when profiled by mass spectrometry (MS) after kinase inhibitor bead pulldown. MS showed that NF1 can also directly and selectively bind to palbociclib-conjugated beads, aiding quantification. An IHC assay was also established to measure NF1, but the MS-based approach was more quantitative. Combined IHC and MS analysis defined a threshold of NF1 protein loss in ER+ breast PDX, below which tumors regressed upon treatment with B+F. These results suggest that we now have a MS-verified NF1 IHC assay that can be used for patient selection as a complement to somatic genomic analysis. Significance: A major challenge for targeting the consequence of tumor suppressor disruption is the accurate assessment of protein functional inactivation. NF1 can repress both RAS and ER signaling, and a ComboMATCH trial is underway to treat the patients with binimetinib and fulvestrant. Herein we report a MS-verified NF1 IHC assay that can determine a threshold for NF1 loss to predict treatment response. These approaches may be used to identify and expand the eligible patient population.


Assuntos
Neoplasias da Mama , Proteogenômica , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neurofibromina 1/genética , Fulvestranto/farmacologia , Receptores de Estrogênio/genética , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição NFI , RNA Mensageiro , Quinases de Proteína Quinase Ativadas por Mitógeno
4.
Res Sq ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37502925

RESUMO

CDK4/6 inhibitors (CDK4/6i) have improved survival of patients with estrogen receptor-positive (ER+) breast cancer. However, patients treated with CDK4/6i eventually develop drug resistance and progress. RB1 loss-of-function alterations confer acquired resistance to CDK4/6i, but the optimal therapy for these patients is unclear. Using a genome-wide CRISPR screen, we identified protein arginine methyltransferase 5 (PRMT5) as a molecular vulnerability in ER+/RB1-knockout (RBKO) breast cancer cells. PRMT5 inhibition blocked cell cycle G1-to-S transition independent of RB, thus arresting growth of RBKO cells. Proteomics analysis uncovered fused in sarcoma (FUS) as a downstream effector of PRMT5. Pharmacological inhibition of PRMT5 resulted in dissociation of FUS from RNA polymerase II (Pol II), Ser2 Pol II hyperphosphorylation, and intron retention in genes that promote DNA synthesis. Treatment with the PRMT5i inhibitor pemrametostat and fulvestrant synergistically inhibited growth of ER+/RB-deficient patient-derived xenografts, suggesting dual ER and PRMT5 blockade as a novel therapeutic strategy to treat ER+/RB-deficient breast cancer.

5.
Transl Oncol ; 33: 101676, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37086619

RESUMO

G0/G1 switch gene 2 (G0S2) is known to inhibit lipolysis by inhibiting adipose triglyceride lipase (ATGL). In this report, we dissect the role of G0S2 in ER+ versus ER- breast cancer. Overexpression of G0S2 in ER- cells increased cell proliferation, while G0S2 overexpression in ER+ cells decreased cell proliferation. Transcriptome analysis revealed that G0S2 mediated distinct but overlapping transcriptional responses in ER- and ER+ cells. G0S2 reduced genes associated with an epithelial phenotype, especially in ER- cells, including CDH1, ELF3, STEAP4 and TACSTD2, suggesting promotion of the epithelial-mesenchymal transition (EMT). G0S2 also repressed estrogen signaling and estrogen receptor target gene signatures, especially in ER+ cells, including TFF1 and TFF3. In addition, G0S2 overexpression increased cell migration in ER- cells and increased estrogen deprivation sensitivity in ER+ cells. Interestingly, two genes downstream of ATGL in fat utilization and very important in steroid hormone biosynthesis, HMGCS1 and HMGCS2, were downregulated in G0S2 overexpressing ER+ cells. In addition, HSD17B11, a gene that converts estradiol to its less estrogenic derivative, estrone, was highly upregulated in G0S2 overexpressing ER+ cells, suggesting G0S2 overexpression has a negative effect on estradiol production and maintenance. High expression of G0S2 and HSD17B11 was associated with improved relapse-free survival in breast cancer patients while high expression of HMGSC1 was associated with poor survival. Finally, we deleted G0S2 in breast cancer-prone MMTV-PyMT mice. Our data indicates a complex role for G0S2 in breast cancer, dependent on ER status, that may be partially mediated by suppression of the estrogen signaling pathway.

6.
Mol Oncol ; 16(3): 683-698, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34482638

RESUMO

Testicular germ cell tumors (TGCTs) are aggressive but sensitive to cisplatin-based chemotherapy. Alternative therapies are needed for tumors refractory to cisplatin with hypomethylating agents providing one possibility. The mechanisms of cisplatin hypersensitivity and resistance in TGCTs remain poorly understood. Recently, it has been shown that TGCTs, even those resistant to cisplatin, are hypersensitive to very low doses of hypomethylating agents including 5-aza deoxy-cytosine (5-aza) and guadecitabine. We undertook a pharmacogenomic approach in order to better understand mechanisms of TGCT hypomethylating agent hypersensitivity by generating a panel of acquired 5-aza-resistant TGCT cells and contrasting these to previously generated acquired isogenic cisplatin-resistant cells from the same parent. Interestingly, there was a reciprocal relationship between cisplatin and 5-aza sensitivity, with cisplatin resistance associated with increased sensitivity to 5-aza and 5-aza resistance associated with increased sensitivity to cisplatin. Unbiased transcriptome analysis revealed 5-aza-resistant cells strongly downregulated polycomb target gene expression, the exact opposite of the finding for cisplatin-resistant cells, which upregulated polycomb target genes. This was associated with a dramatic increase in H3K27me3 and decrease in DNMT3B levels in 5-aza-resistant cells, the exact opposite changes seen in cisplatin-resistant cells. Evidence is presented that reciprocal regulation of polycomb and DNMT3B may be initiated by changes in DNMT3B levels as DNMT3B knockdown alone in parental cells resulted in increased expression of H3K27me3, EZH2, and BMI1, conferred 5-aza resistance and cisplatin sensitization, and mediated genome-wide repression of polycomb target gene expression. Finally, genome-wide analysis revealed that 5-aza-resistant, cisplatin-resistant, and DNMT3B-knockdown cells alter the expression of a common set of polycomb target genes. This study highlights that reciprocal epigenetic changes mediated by DNMT3B and polycomb may be a key driver of the unique cisplatin and 5-aza hypersensitivity of TGCTs and suggests that distinct epigenetic vulnerabilities may exist for pharmacological targeting of TGCTs.


Assuntos
Antineoplásicos , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Metilação de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Testiculares/tratamento farmacológico , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia
7.
Epigenetics ; 16(10): 1071-1084, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33126827

RESUMO

Testicular germ cell tumours (TGCTs) respond well to cisplatin-based therapy. However, cisplatin resistance and poor outcomes do occur. It has been suggested that a shift towards DNA hypermethylation mediates cisplatin resistance in TGCT cells, although there is little direct evidence to support this claim. Here we utilized a series of isogenic cisplatin-resistant cell models and observed a strong association between cisplatin resistance in TGCT cells and a net increase in global CpG and non-CpG DNA methylation spanning regulatory, intergenic, genic and repeat elements. Hypermethylated loci were significantly enriched for repressive DNA segments, CTCF and RAD21 sites and lamina associated domains, suggesting that global nuclear reorganization of chromatin structure occurred in resistant cells. Hypomethylated CpG loci were significantly enriched for EZH2 and SUZ12 binding and H3K27me3 sites. Integrative transcriptome and methylome analyses showed a strong negative correlation between gene promoter and CpG island methylation and gene expression in resistant cells and a weaker positive correlation between gene body methylation and gene expression. A bidirectional shift between gene promoter and gene body DNA methylation occurred within multiple genes that was associated with upregulation of polycomb targets and downregulation of tumour suppressor genes. These data support the hypothesis that global remodelling of DNA methylation is a key factor in mediating cisplatin hypersensitivity and chemoresistance of TGCTs and furthers the rationale for hypomethylation therapy for refractory TGCT patients.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Cisplatino , Ilhas de CpG , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias Testiculares/genética
8.
Cancer Med ; 10(1): 156-163, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135391

RESUMO

PURPOSE: Germ cell tumors (GCTs) are cured with therapy based on cisplatin, although a clinically significant number of patients are refractory and die of progressive disease. Based on preclinical studies indicating that refractory testicular GCTs are hypersensitive to hypomethylating agents (HMAs), we conducted a phase I trial combining the next-generation HMA guadecitabine (SGI-110) with cisplatin in recurrent, cisplatin-resistant GCT patients. METHODS: Patients with metastatic GCTs were treated for five consecutive days with guadecitabine followed by cisplatin on day 8, for a 28-day cycle for up to six cycles. The primary endpoint was safety and toxicity including dose-limiting toxicity (DLT) and maximum tolerated dose (MTD). RESULTS: The number of patients enrolled was 14. The majority of patients were heavily pretreated. MTD was determined to be 30 mg/m2 guadecitabine followed by 100 mg/m2 cisplatin. The major DLTs were neutropenia and thrombocytopenia. Three patients had partial responses by RECIST criteria, two of these patients, including one with primary mediastinal disease, completed the study and qualified as complete responses by serum tumor marker criteria with sustained remissions of 5 and 13 months and survival of 16 and 26 months, respectively. The overall response rate was 23%. Three patients also had stable disease indicating a clinical benefit rate of 46%. CONCLUSIONS: The combination of guadecitabine and cisplatin was tolerable and demonstrated activity in patients with platinum refractory germ cell cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Azacitidina/análogos & derivados , Cisplatino/uso terapêutico , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Testiculares/tratamento farmacológico , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Azacitidina/efeitos adversos , Azacitidina/uso terapêutico , Cisplatino/efeitos adversos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Humanos , Indiana , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias Embrionárias de Células Germinativas/secundário , Neoplasias Testiculares/patologia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
9.
Rwanda j. med. health sci. (Online) ; 3(3): 328-341, 2020. tables
Artigo em Inglês | AIM (África) | ID: biblio-1518522

RESUMO

Background Diarrhoeal disease is a worldwide public health issue and remains a major cause of mortality and morbidity in children under five years old. Low and middle income countries (LMIC) of Africa and part of Asia are more affected by diarrhoeal diseases. Objectives To measure the prevalence of Diarrhoeal Diseases and to assess Socio-demographic determinants among Under Five Years Old Children in Rwanda. Methods A cross-sectional design was used. Secondary data analysis was carried out on a sample of 7474 drawn from Rwanda Demographic and Health Survey (RDHS). RDHS used multistage sampling technique. Results After running multiple logistic regression, Sociodemographic determinants associated with diarrhoeal included age of children, wealth index category, mother education, husband/partner education, types of place of residence (P-Value) Conclusion The results of the study showed that diarrhoeal remains an important health issue in Rwanda. Occurrence of diarrhoeal was statistically associated with child age, wealth index, education of parents, types of place of residence.


Assuntos
Humanos , Masculino , Diarreia , Diarreia Infantil
10.
Cancers (Basel) ; 11(6)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181810

RESUMO

A greater understanding of the hypersensitivity and curability of testicular germ cell tumors (TGCTs) has the potential to inform strategies to sensitize other solid tumors to conventional chemotherapies. The mechanisms of cisplatin hypersensitivity and resistance in embryonal carcinoma (EC), the stem cells of TGCTs, remain largely undefined. To study the mechanisms of cisplatin resistance we generated a large panel of independently derived, acquired resistant clones from three distinct parental EC models employing a protocol designed to match standard of care regimens of TGCT patients. Transcriptomics revealed highly significant expression changes shared between resistant cells regardless of their parental origin. This was dominated by a highly significant enrichment of genes normally repressed by H3K27 methylation and the polycomb repressive complex 2 (PRC2) which correlated with a substantial decrease in global H3K27me3, H2AK119 ubiquitination, and expression of BMI1. Importantly, repression of H3K27 methylation with the EZH2 inhibitor GSK-126 conferred cisplatin resistance to parental cells while induction of H3K27 methylation with the histone lysine demethylase inhibitor GSK-J4 resulted in increased cisplatin sensitivity to resistant cells. A gene signature based on H3K27me gene enrichment was associated with an increased rate of recurrent/progressive disease in testicular cancer patients. Our data indicates that repression of H3K27 methylation is a mechanism of cisplatin acquired resistance in TGCTs and that restoration of PRC2 complex function is a viable approach to overcome treatment failure.

11.
Cell Cycle ; 16(21): 2146-2155, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28910567

RESUMO

G0/G1 switch gene 2 (G0S2) is a direct retinoic acid target implicated in cancer biology and therapy based on frequent methylation-mediated silencing in diverse solid tumors. We recently reported that low G0S2 expression in breast cancer, particularly estrogen receptor-positive (ER+) breast cancer, correlates with increased rates of recurrence, indicating that G0S2 plays a role in breast cancer progression. However, the function(s) and mechanism(s) of G0S2 tumor suppression remain unclear. In order to determine potential mechanisms of G0S2 anti-oncogenic activity, we performed genome-wide expression analysis that revealed an enrichment of gene signatures related to PI3K/mTOR pathway activation in G0S2 null cells as compared to G0S2 wild-type cells. G0S2 null cells also exhibited a dramatic decreased sensitivity to PI3K/mTOR pathway inhibitors. Conversely, restoring G0S2 expression in human ER+ breast cancer cells decreased basal mTOR signaling and sensitized the cells to pharmacologic mTOR pathway inhibitors. Notably, we provide evidence here that the increase in recurrence seen with low G0S2 expression is especially prominent in patients who have undergone antiestrogen therapy. Further, ER+ breast cancer cells with restored G0S2 expression had a relative increased sensitivity to tamoxifen. These findings reveal that in breast cancer G0S2 functions as a tumor suppressor in part by repressing PI3K/mTOR activity, and that G0S2 enhances therapeutic responses to PI3K/mTOR inhibitors. Recent studies implicate hyperactivation of PI3K/mTOR signaling as promoting resistance to antiestrogen therapies in ER+ breast cancer. Our data establishes G0S2 as opposing this form of antiestrogen resistance. This promotes further investigation of the role of G0S2 as an antineoplastic breast cancer target and a biomarker for recurrence and therapy response.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/farmacologia , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tamoxifeno/farmacologia
12.
J Leukoc Biol ; 100(4): 665-677, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27084569

RESUMO

Ablation of microRNA synthesis by deletion of the microRNA-processing enzyme Dicer has demonstrated that microRNAs are necessary for normal hematopoietic differentiation and function. However, it is still unclear which specific microRNAs are required for hematopoiesis and at what developmental stages they are necessary. This is especially true for immune cell development. We previously observed that overexpression of the products of the mirn23a gene (microRNA-23a, -24-2, and 27a) in hematopoietic progenitors increased myelopoiesis with a reciprocal decrease in B lymphopoiesis, both in vivo and in vitro. In this study, we generated a microRNA-23a, -24-2, and 27a germline knockout mouse to determine whether microRNA-23a, -24-2, and 27a expression was essential for immune cell development. Characterization of hematopoiesis in microRNA-23a, -24-2, and 27a-/- mice revealed a significant increase in B lymphocytes in both the bone marrow and the spleen, with a concomitant decrease in myeloid cells (monocytes/granulocytes). Analysis of the bone marrow progenitor populations revealed a significant increase in common lymphoid progenitors and a significant decrease in both bone marrow common myeloid progenitors and granulocyte monocyte progenitors. Gene-expression analysis of primary hematopoietic progenitors and multipotent erythroid myeloid lymphoid cells showed that microRNA-23a, -24-2, and 27a regulates essential B cell gene-expression networks. Overexpression of microRNA-24-2 target Tribbles homolog 3 can recapitulate the microRNA-23a, -24-2, and 27a-/- phenotype in vitro, suggesting that increased B cell development in microRNA-23a, -24-2, and 27a null mice can be partially explained by a Tribbles homolog 3-dependent mechanism. Data from microRNA-23a, -24-2, and 27a-/- mice support a critical role for this microRNA cluster in regulating immune cell populations through repression of B lymphopoiesis.


Assuntos
Linfócitos B/patologia , Linfopoese/fisiologia , MicroRNAs/fisiologia , Animais , Antígenos de Diferenciação de Linfócitos B/análise , Células da Medula Óssea/patologia , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular , Redes Reguladoras de Genes , Imunoglobulina G/biossíntese , Ativação Linfocitária , Contagem de Linfócitos , Linfopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/genética , Células Mieloides/patologia , Plasmócitos/imunologia
13.
PLoS Genet ; 11(1): e1004959, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25634354

RESUMO

Overexpression of miRNA, miR-24, in mouse hematopoietic progenitors increases monocytic/ granulocytic differentiation and inhibits B cell development. To determine if endogenous miR-24 is required for hematopoiesis, we antagonized miR-24 in mouse embryonic stem cells (ESCs) and performed in vitro differentiations. Suppression of miR-24 resulted in an inability to produce blood and hematopoietic progenitors (HPCs) from ESCs. The phenotype is not a general defect in mesoderm production since we observe production of nascent mesoderm as well as mesoderm derived cardiac muscle and endothelial cells. Results from blast colony forming cell (BL-CFC) assays demonstrate that miR-24 is not required for generation of the hemangioblast, the mesoderm progenitor that gives rise to blood and endothelial cells. However, expression of the transcription factors Runx1 and Scl is greatly reduced, suggesting an impaired ability of the hemangioblast to differentiate. Lastly, we observed that known miR-24 target, Trib3, is upregulated in the miR-24 antagonized embryoid bodies (EBs). Overexpression of Trib3 alone in ESCs was able to decrease HPC production, though not as great as seen with miR-24 knockdown. These results demonstrate an essential role for miR-24 in the hematopoietic differentiation of ESCs. Although many miRNAs have been implicated in regulation of hematopoiesis, this is the first miRNA observed to be required for the specification of mammalian blood progenitors from early mesoderm.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Hematopoese/genética , MicroRNAs/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas de Ciclo Celular/biossíntese , Ensaio de Unidades Formadoras de Colônias , Subunidade alfa 2 de Fator de Ligação ao Core/biossíntese , Embrião de Mamíferos , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , MicroRNAs/antagonistas & inibidores , Proteínas Proto-Oncogênicas/biossíntese , Proteína 1 de Leucemia Linfocítica Aguda de Células T
14.
J Vis Exp ; (92): e52022, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25350134

RESUMO

Embryonic stem cells (ESCs) are an outstanding model for elucidating the molecular mechanisms of cellular differentiation. They are especially useful for investigating the development of early hematopoietic progenitor cells (HPCs). Gene expression in ESCs can be manipulated by several techniques that allow the role for individual molecules in development to be determined. One difficulty is that expression of specific genes often has different phenotypic effects dependent on their temporal expression. This problem can be circumvented by the generation of ESCs that inducibly express a gene of interest using technology such as the doxycycline-inducible transgene system. However, generation of these inducible cell lines is costly and time consuming. Described here is a method for disaggregating ESC-derived embryoid bodies (EBs) into single cell suspensions, retrovirally infecting the cell suspensions, and then reforming the EBs by hanging drop. Downstream differentiation is then evaluated by flow cytometry. Using this protocol, it was demonstrated that exogenous expression of a microRNA gene at the beginning of ESC differentiation blocks HPC generation. However, when expressed in EB derived cells after nascent mesoderm is produced, the microRNA gene enhances hematopoietic differentiation. This method is useful for investigating the role of genes after specific germ layer tissue is derived.


Assuntos
Corpos Embrioides/citologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/virologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/virologia , Retroviridae/genética , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Expressão Gênica , Células-Tronco Hematopoéticas/fisiologia , Camundongos , MicroRNAs/biossíntese , MicroRNAs/genética , Transgenes
15.
Calcif Tissue Int ; 93(2): 155-62, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23700148

RESUMO

X-linked hypophosphatemia (XLH) is caused by mutations in the PHEX gene, which increase circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Because XLH is a dominant disease, one mutant allele is sufficient for manifestation of the disease. However, the dosage effect of a PHEX mutation in XLH is not completely understood. To examine the effect of Phex genotypes, we compared serum biochemistries and skeletal measures between all five possible genotypes of a new murine model of XLH (Phex (K496X) or Phex (Jrt) ). Compared to sex-matched littermate controls, all Phex mutant mice had hypophosphatemia, mild hypocalcemia, and increased parathyroid hormone and alkaline phosphatase levels. Furthermore, mutant mice had markedly elevated serum Fgf23 levels due to increased Fgf23 expression and reduced cleavage of Fgf23. Although females with a homozygous Phex mutation were slightly more hypocalcemic and hypophosphatemic than heterozygous females, the two groups had comparable intact Fgf23 levels. Similarly, there was no difference in intact Fgf23 or phosphorus concentrations between hemizygous males and heterozygous females. Compared to heterozygous females, homozygous counterparts were significantly smaller and had shorter femurs with reduced bone mineral density, suggesting the existence of dosage effect in the skeletal phenotype of XLH. However, overall phenotypic trends in regards to mineral ion homeostasis were mostly unaffected by the presence of one or two mutant Phex allele(s). The lack of a gene dosage effect on circulating Fgf23 (and thus phosphorus) levels suggests that a Phex mutation may create the lower set point for extracellular phosphate concentrations.


Assuntos
Raquitismo Hipofosfatêmico Familiar/genética , Dosagem de Genes , Mutação , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/metabolismo , Alelos , Animais , Densidade Óssea , Feminino , Fêmur/anatomia & histologia , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Genótipo , Heterozigoto , Masculino , Camundongos , Fenótipo , Fosfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...